BANCO INTERAMERICANO DE DESARROLLO

Hydro-BID

Sistema público de datos y simulación de recursos hídricos para la región de América Latina y el Caribe

Mauro Nalesso
División de Agua y Saneamiento
mauron@iadb.org

CAPÍTULO I

- 1. Qué es Hydro-BID?
- 2. Componentes
- 3. Aplicabilidad
- 4. Próximos pasos

Qué es Hydro-BID?

Un sistema integrado y cuantitativo para simular hidrología y gestión de recursos hídricos en la región de ALC, bajo escenarios de cambio (p. ej., clima, uso del suelo, población), que permite evaluar la cantidad y calidad del agua*, las necesidades de infraestructura, y el diseño de estrategias y proyectos de adaptación en respuesta a estos cambios.

Cuales son sus componentes?

Base de datos consolidada y pre-calibrada para toda ALC

Plataforma simple y flexible que permite interactuar con otras herramientas

Plataforma accesible para la región, que ayuda a promover el uso de herramientas de análisis para abordar problemas de recursos hídricos, que son intersectoriales por la naturaleza.

Cuales son sus componentes?

Base de Datos Hidrográficos (LAC-AHD)

Delineación de cuencas y red de drenaje Datos de Entrada:

Topografía
Tipo de suelo
Uso de la tierra
Temperatura
Lluvia

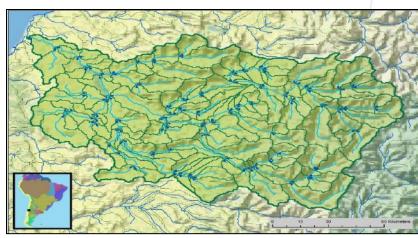
Modelo de Simulación Hidrológica (GWLF)

- Análisis de riesgo
- Diseño de infraestructura adaptativa
- Gestión de embalses
- Análisis hidroeconómicos
- Asignación del recurso hídrico para diferentes sectores

Modelo de gestión de recursos hídricos

Balance hídrico y serie temporal de caudal en cada cuenca

Datos de Entrada:


Demandas de agua Precio / costos

LAC-AHD

- AHD es una base de datos que está disponible para toda la región de ALC.
- Completamente derivada de un mapa digital de elevación (DEM) usando SRTM (NASA)
 - -arc 15 segundos píxeles (90 m promedio)
- Estos datos se procesaron para delinear las cuencas y determinar la red de drenaje y conectividad
- Shape files de las cuencas



Delineación de Cuencas

- ~230,000+ cuencas/cauces fluviales a lo largo de LAC
- ~Tamaño promedio de cuenca: 80 km²; longitud de cauce fluvial: 10 km

Hidrografía AHD América Central y el Caribe

Hidrografía AHD América del Sur

Delineación de Cuencas

México / América Central:

33,000 las cuencas (y red fluvial)

Tamaño promedio: 84 km2

Longitud promedio de segmento fluvial : 10 Km

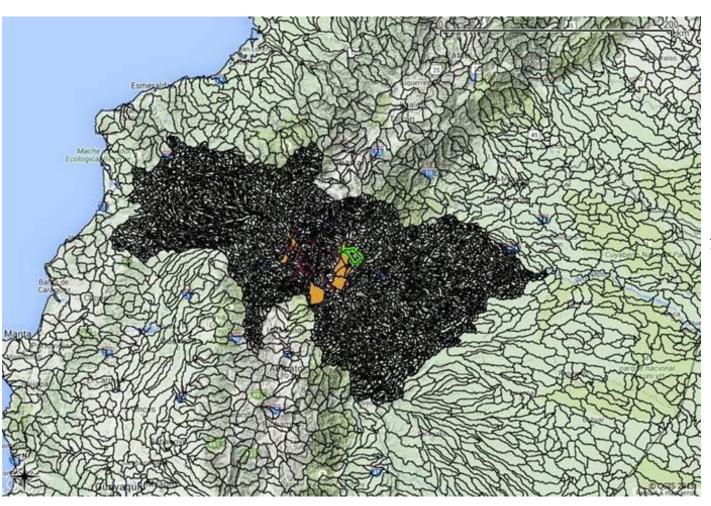
El Caribe:

3,300 cuencas (y red fluvial)

Tamaño promedio: 72 km2

Longitud promedio de segmento fluvial : 11 km

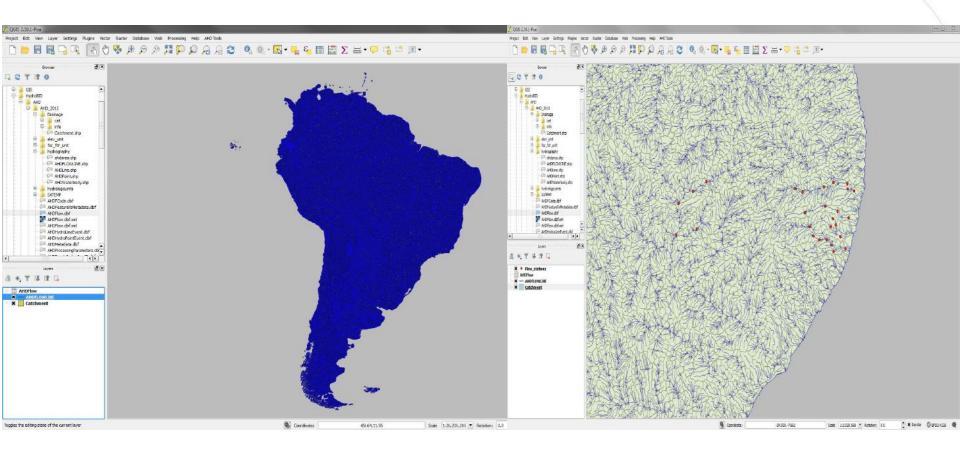
América del Sur:


193,000 cuencas (y red fluvial)

Tamaño promedio: 92 km2

Longitud promedio de segmento fluvial: 11 km

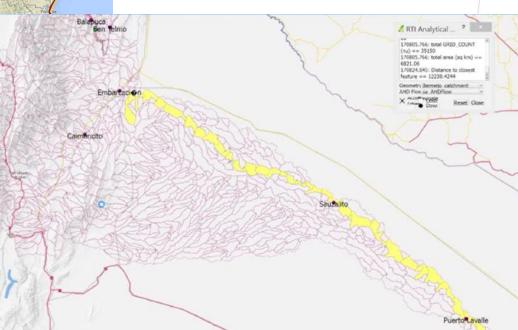
AHD Alta Resolución



Caso Quito – EC Tamaño promedio de

Tamaño promedio de cuenca: 5 km²

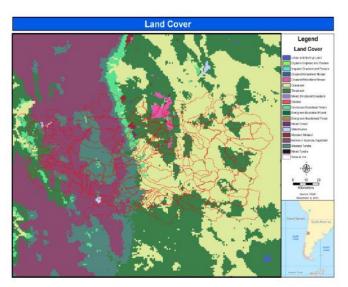
QGIS

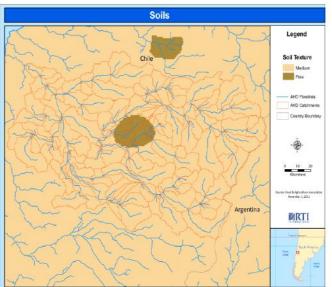

QGIS: Visualización

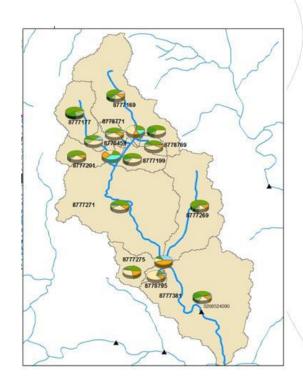
Cartain By Systems

Cartai

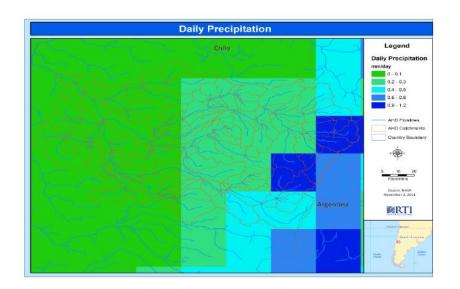
Conectividad entre cuencas y cauces fluviales

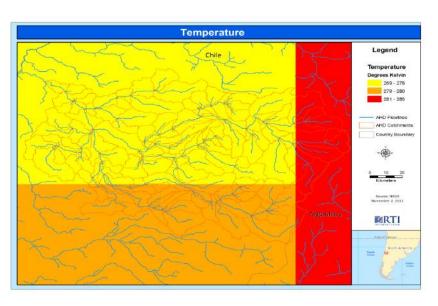

Patrón de drenaje de cuencas (aguas arriba y aguas abajo)

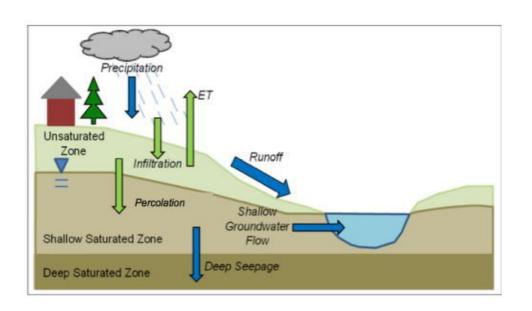

Hydro-BID permite el análisis de problemas del recurso hídrico en multiples escalas


Suelos y Uso de la Tierra

Uso de la tierra
U.S. Geological
Survey data base




Tipo de suelos Harmonized World Soil Database (FAO)


Precipitación y Temperatura

Modelo Hidrológico (GWLF) "Generalized Watershed Loading Function"

El balance hídrico y los caudales se calculan por cuenca

Los caudales de cada cuenca se van sumando de acuerdo al patrón de drenaje

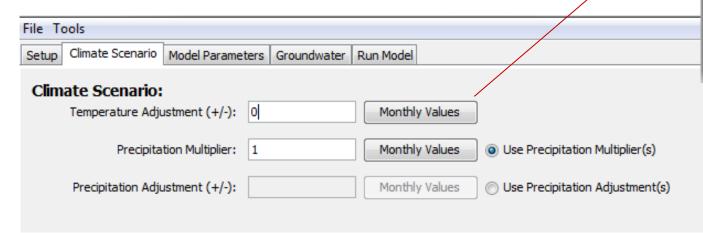
Cada cuenca tiene:

- Precipitación
- Temperatura
- Topografía
- Tipo de suelo
- Uso de la tierra
- Demandas de agua
- Caudal de retorno
- Parámetros hidrológicos

Interfaz de Usuario

Setup del modelo

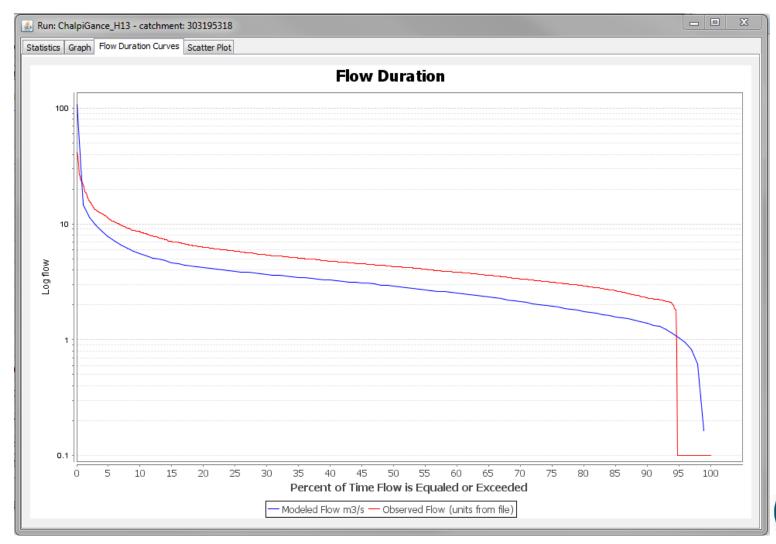
Parámetros del modelo hidrológico


Setup Climate Scenario Model Paramet	ers Groundwater	Run Model		
Hydro Model Parameters:				
Stream velocity (m/s): .5		☑ Get Latitude from Database		
Latitude (degrees):		▼ Include Reservoirs		
Start of growing season (day of year):	1	Save Deep Seepage		
End of growing season (day of year):	295]		
Calibration Cutoff COMID:				
Single V	alue Multiplier	Use Calibrated	Replace All	
Curve Number:	•	©	•	1.42
AWC:	•	©	•	0.2
R Coefficient:		©	•	0.08
Seepage:		©	•	0.01
Grow season ET factor:		©	•	0.4
Dormant season ET factor:		©	•	0.3
Impervious cover percent:		©	•	0.01
Sediment paramters: Include Sediment parameters				
Topographic factor:				
Soil Erodibility factor:		•		
Cover Management factor:		•		
Support practice factor:				
Coarse and fragmentation factor:				

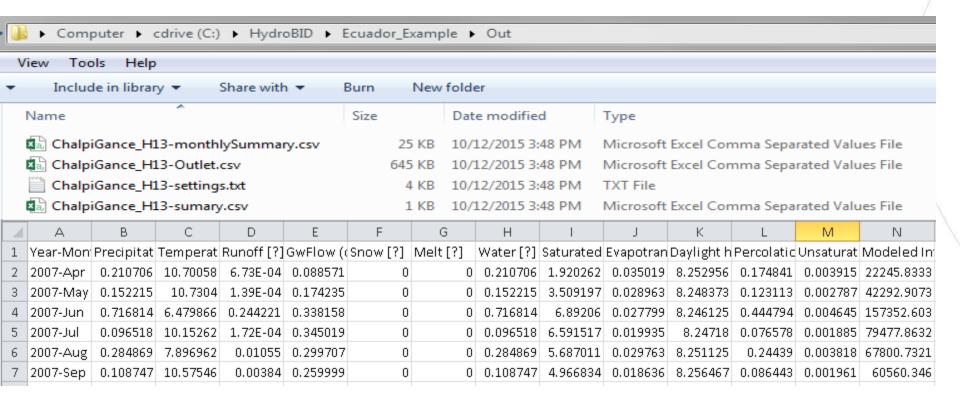
Escenarios de Cambio Climático

Pestaña de "Escenario de Cambio Climático"


- Permitir aumentar/disminuir la precipitación/ temperatura global en todas las cuencas
- Permite factores de aumento/disminución en escala mensual



Resultados: Graficas


Resultados: Curva de Duración de Flujo

Resultados: Datos

- Series diarias
- Series mensuales
- Resumen de rendimiento
- Archivos de configuración

Cual es su aplicabilidad?

- Calculo de series de caudales y balance hídrico
- Análisis de los impactos del cambio climático
- Simulación de aguas subterráneas
- Pronostico de cambios en la calidad del agua atribuibles a cambios en aguas superficiales(transporte de sedimentos)
- Análisis de demandas de agua, modelado de distribución del recurso, análisis de costo/beneficio
- Escenarios de políticas de gestión del agua (soporte de toma de decisiones)
- Gestión y dimensionamiento de embalses (clima, sedimentación, etc.)
- Gestión de la irrigación
- Ubicación y dimensionamiento de proyectos hidroeléctricos
- Gestión de riesgos (sequías, inundaciones)

Próximos Pasos

- Modulo de análisis de calidad de agua
- Visualización de resultados (mapas)
- Módulo de concesiones
- Plataforma online
- Centro de soporte técnico

Centro de Apoyo Técnico para la Gestión de los Recursos Hídricos en ALC (TSC)

CAPÍTULO II

- 1. Misión/Objetivos
- 2. Actividades
- 3. Socios
- 4. Clientes
- Estructura
- 6. Servicios

Coming Soon!

Misión / Objetivos

<u>Misión</u>: Ofrecer herramientas, análisis, capacitación, y soluciones especificas para la gestión integrada de los recursos hídricos en América Latina y el Caribe

Objetivos:

- Mejora de la productividad, calidad, y seguridad hídrica con el uso de herramientas analíticas
- Aumentar de la capacidad institucional (conocimiento, habilidades, herramientas, datos y sistemas) para la gestión de las cuencas hidrográficas, embalses, distribución y calidad del agua
- Brindar un proceso de pre-factibilidad hidrológica más sencillo y eficiente para el análisis de infraestructura hídrica
- Mejorar la gobernabilidad y seguridad hídrica beneficiando X personas en Y países

Actividades

- Construir una comunidad de intercambio basada en el progreso obtenido en el desarrollo y aplicación de Hydro-BID
- Evaluar las necesidades de nuestros clientes
- Identificar y desarrollar proyectos (estudios de pre-factibilidad)
- Proporcionar entrenamiento y soporte técnico
- Realizar análisis específicos
- Configurar modelos & sistemas de datos personalizados
- Mantener y actualizar Hydro-BID

Socios

Iniciativa conjunta entre:

Socios Clave:

- Agencias internacionales que generen y gestionen datos críticos
- Desarrolladores y proveedores de software complementario que se puedan integrar con Hydro-BID
- Universidades

Clientes

El TSC servirá al BID y a sus instituciones clientes en países miembros:

- Agencias publicas o privadas encargadas de la gestión del agua
- Agencias publicas o privadas de saneamiento, suministro de agua potable y alcantarillado
- Ministerios / Secretarías de planificación
- Fundaciones y donantes corporativos

iMUCHAS GRACIAS!

Visitanos en:

WWW.HYDROBIDLAC.ORG

